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Abstract

I will discuss our recent work on implementing the coupled-cluster
method (CC) on GPUs. CC is an important quantum many-body
method for molecular calculations and is considered the ”gold
standard” due to its accuracy and black box nature. Because CC
can be implemented in terms of matrix-matrix multiplication
([SD]GEMM) operations, it is relatively straightforward to
implement on GPUs using CUDA BLAS. However, due to the large
number of terms, memory limitations of NVIDIA Fermi cards, and
large variation in matrix dimensions, realizing a large speedup
requires careful memory management and movement of data. This
talk will present our earlier work on a GPU-only implementation of
CCD as well as a more recent hybrid CCSD code, which attempts
to dynamically optimize the overlap of computation and
communication.
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Motivation
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Wavefunction theory

Second-order perturbation theory (MP2) is
accurate via magical cancellation of error but
can’t do excited states.

Quantum Monte Carlo (QMC) integration
applied to the Schrödinger equation but can’t
do most properties.

Coupled-cluster theory (CC) is infinite-order
solution to many-body Schrödinger equation;
it can do both excited-state and properties.

CC applications limited to 10-100 atoms on
terascale and petascale computers because of
scaling: ∼ Nx

basis (x=5-7)
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Motivation for CC with HPC

Electronic excited-states and electric-field perturbations
push the limits of conventional approximations in density
functional theory (DFT) and are outside the scope of
classical methods.

Interesting chemical processes in biology and material
science require model systems too large for a conventional
computational resources.

Answering many chemical questions requires large data
sets which cannot be obtained in a reasonable amount
time if done sequentially.
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Coupled-cluster theory
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Coupled-cluster theory

The coupled–cluster (CC) wavefunction ansatz is

|CC 〉 = eT |HF 〉

where T = T1 + T2 + · · ·+ Tn.

T is an excitation operator which promotes n electrons from
occupied orbitals to virtual orbitals in the Hartree-Fock Slater
determinant.

Inserting |CC 〉 into the Schödinger equation:

ĤeT |HF 〉 = ECCe
T |HF 〉 Ĥ|CC 〉 = ECC |CC 〉
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Coupled-cluster theory

|CC 〉 = exp(T )|0〉
T = T1 + T2 + · · ·+ Tn (n� N)

T1 =
∑
ia

tai â
†
aâi

T2 =
∑
ijab

tabij â†aâ
†
bâj âi

|ΨCCD〉 = exp(T2)|ΨHF 〉
= (1 + T2 + T 2

2 )|ΨHF 〉
|ΨCCSD〉 = exp(T1 + T2)|ΨHF 〉

= (1 + T1 + · · ·+ T 4
1 + T2 + T 2

2 + T1T2 + T 2
1T2)|ΨHF 〉
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Coupled-cluster theory

Projective solution of CC:

ECC = 〈HF |e−THeT |HF 〉
0 = 〈X |e−THeT |HF 〉 (X = S ,D, . . .)

CCD is:

ECC = 〈HF |e−T2HeT2 |HF 〉
0 = 〈D|e−T2HeT2 |HF 〉

CCSD is:

ECC = 〈HF |e−T1−T2HeT1+T2 |HF 〉
0 = 〈S |e−T1−T2HeT1+T2 |HF 〉
0 = 〈D|e−T1−T2HeT1+T2 |HF 〉
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Notation

H = H1 + H2

= F + V

F is the Fock matrix. CC only uses the diagonal in the canonical
formulation.

V is the fluctuation operator and is composed of two-electron
integrals as a 4D array.

V has 8-fold permutation symmetry in V rs
pq and is divided into six

blocks: V kl
ij , V ka

ij , V jb
ia , V ab

ij , V bc
ia , V cd

ab .

Indices i , j , k , . . . (a, b, c , . . .) run over the occupied (virtual)
orbitals.
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CCD Equations

Rab
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ij + P(ia, jb)
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Turning CC into GEMM 1

Some tensor contractions are
trivially mapped to GEMM:

I ijkl + = V ij
ef T

ef
kl

I
(ij)
(kl) + = V

(ij)
(ef )T

(ef )
(kl)

I ba + = V b
c T

c
a

Other contractions require
reordering to use BLAS:

I iabj + = V im
be T

ea
mj

Ibj ,ia + = Vbe,imTmj ,ea

Jbi ,ja + = Wbi ,meUme,ja

J jabi + = Wme
bi U ja

me

J
(ja)
(bi) + = W

(me)
(bi) U

(ja)
(me)

Jzx + = W y
x U

z
y
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Turning CC into GEMM 2

Reordering can take as much time as GEMM. Why?

Routine flops mops pipelined

GEMM O(mnk) O(mn + mk + kn) yes
reorder 0 O(mn + mk + kn) no

Increased memory bandwidth on GPU makes reordering less
expensive (compare matrix transpose).

(There is a chapter in my thesis with profiling results and more
details if anyone cares.)
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Hardware Details

CPU GPU
X5550 2 X5550 C1060 C2050

processor speed (MHz) 2660 2660 1300 1150
memory bandwidth (GB/s) 32 64 102 144

memory speed (MHz) 1066 1066 800 1500
ECC available yes yes no yes
SP peak (GF) 85.1 170.2 933 1030
DP peak (GF) 42.6 83.2 78 515

power usage (W) 95 190 188 238

Note that power consumption is apples-to-oranges since CPU does
not include DRAM, whereas GPU does.
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Relative Performance of GEMM

GPU versus SMP CPU (8 threads):
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We expect roughly 4-5 times speedup based upon this evaluation.
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Chemistry Details

Molecule o v

C8H10 21 63
C10H8 24 72
C10H12 26 78
C12H14 31 93
C14H10 33 99
C14H16 36 108

C20 40 120
C16H18 41 123
C18H12 42 126
C18H20 46 138

6-31G basis set

C1 symmetry

F and V from PSI3.

GPU code now runs from PSI3.

Without committing to anything, the intent
is to release the code under GPL with PSI4.
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CCD Algorithm
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CCD Performance Results

Iteration time in seconds
our DP code X5550

C2050 C1060 X5550 Molpro TCE GAMESS

C8H10 0.3 0.8 1.3 2.3 5.1 6.2
C10H8 0.5 1.5 2.5 4.8 10.6 12.7
C10H12 0.8 2.5 3.5 7.1 16.2 19.7
C12H14 2.0 7.1 10.0 17.6 42.0 57.7
C14H10 2.7 10.2 13.9 29.9 59.5 78.5
C14H16 4.5 16.7 21.6 41.5 90.2 129.3

C20 8.8 29.9 40.3 103.0 166.3 238.9
C16H18 10.5 35.9 50.2 83.3 190.8 279.5
C18H12 12.7 42.2 50.3 111.8 218.4 329.4
C18H20 20.1 73.0 86.6 157.4 372.1 555.5
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CCD Performance Summary
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Numerical Precision versus Performance

Iteration time in seconds
C1060 C2050 X5550

molecule SP DP SP DP SP DP

C8H10 0.2 0.8 0.2 0.3 0.7 1.3
C10H8 0.4 1.5 0.2 0.5 1.3 2.5
C10H12 0.7 2.5 0.4 0.8 2.0 3.5
C12H14 1.8 7.1 1.0 2.0 5.6 10.0
C14H10 2.6 10.2 1.5 2.7 8.4 13.9
C14H16 4.1 16.7 2.4 4.5 12.1 21.6

C20 6.7 29.9 4.1 8.8 22.3 40.3
C16H18 9.0 35.9 5.0 10.5 28.8 50.2
C18H12 10.1 42.2 5.6 12.7 29.4 50.3
C18H20 17.2 73.0 10.1 20.1 47.0 86.6

Almost no work on single-precision or mixed-precision for
standard CPU packages even though it is worth 2x.
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CCSD Equations
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CCSD Algortihm

Guiding principles:

Too many arrays to fit into GPU memory.

Copy-in every iteration in CCD was not a problem

Want multi-GPU, mixed CPU-GPU algorithms.

Design:

Persistent buffers but push all large arrays every iteration.

O(N6), O(N5) on GPU.

O(N5), O(N4) on CPU.

Dynamically schedule some diagrams each iteration to
load-balance.

Overlap computation and communication with CUDA streams
(CUBLAS compatible now).
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Hybrid CCSD

Iteration time in seconds
Hybrid CPU Molpro NWChem PSI3 TCE GAMESS

C8H10 0.6 1.4 2.4 3.6 7.9 8.4 7.2
C10H8 0.9 2.6 5.1 8.2 17.9 16.8 15.3
C10H12 1.4 4.1 7.2 11.3 23.6 25.2 23.6
C12H14 3.3 11.1 19.0 29.4 54.2 64.4 65.1
C14H10 4.4 15.5 31.0 49.1 61.4 90.7 92.9
C14H16 6.3 24.1 43.1 65.0 103.4 129.2 163.7

C20 10.5 43.2 102.0 175.7 162.6 233.9 277.5
C16H18 10.0 38.9 84.1 117.5 192.4 267.9 345.8
C18H12 14.1 57.1 116.2 178.6 216.4 304.5 380.0
C18H20 22.5 95.9 161.4 216.3 306.9 512.0 641.3

We do at least twice as many flops as Molpro due to CC formalism.
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More hybrid CCSD

molecule Basis o v Hybrid CPU Molpro CPU Molpro
CH3OH aTZ 7 175 2.5 4.5 2.8 1.8 1.1
benzene aDZ 15 171 5.1 14.7 17.4 2.9 3.4

C2H6SO4 aDZ 23 167 9.0 33.2 31.2 3.7 3.5
C10H12 DZ 26 164 10.7 39.5 56.8 3.7 5.3
C10H12 6-31G 26 78 1.4 4.1 7.2 2.9 5.1

Molpro optimized for v/o � 1.

Our code doesn’t favor any limit except o, v � 1.
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The NWChem-GPU connection
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NWChem TCE module

Automatically generated code: easy to rewrite (in
principle).

Data-parallel over tiles using Global Arrays.

Näive dynamic load-balancing (shared counter).

Standard GA programming model:
check out, compute, check in
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TCE CPU algorithm

for (P3,P4,H1,H2) in all (P,P,H,H) tiles:

if (my turn) and (nonzero symmetry):

allocate and zero buffer Jc

for (P5,P6) in all (P,P) tiles:

if (nonzero symmetry):

allocate and zero buffer Tc

get Tb from global T

reorder Tc

allocate and zero buffer Ic

get Ib from global I

reorder Ic

compute Jc += Tc*Ic

reorder Jc

acc Jc onto global J
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TCE GPU algorithm

grab from pool and zero buffer pair (Tc,Tg)

grab from pool and zero buffer pair (Ic,Ig)

if (push gpucompute pull < cpucompute):

iget and push Tg from global T

iget and push Ig from global I

igpu reorder Tg

igpu reorder Ig

gpucompute Jg += Tg*Ig

else:

iget Tc from global T

iget Ic from global I

compute Jc += Tc*Ic

ireorder Jg

reorder Jc

pull and acc Jc += Jg

acc Jc onto global J
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Evaluating the GPU algorithm

Tilesizes not big enough to justify GPU all the time (bad).

Jg stays on the GPU through each pass (good).

Possibly good overlap of data movement (good).

Can unroll inner loop for maximum overlap (good), but
this doubles the memory required (bad).

Threaded CPU code helps memory issues but GA/ARMCI
not thread-safe (funneled or serialized should be okay).

Many of the GPU-oriented optimizations will help with
multicore CPUs. Fully rewritten GPU TCE in NWChem will
probably coincide with porting to BGQ for this reason.
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SAAHPC 2011

What: Symposium on Application Accelerators in HPC
When: July 19-21, 2011
Where: Knoxville, Tennessee

Application Sessions:
Computational chemistry on accelerators (Chair: Jeff Hammond, ALCF)
Lattice QCD (Chair: Steven Gottlieb, Indiana University, Bloomington)
Weather and climate modeling (Chair: John Michalakes, NREL)
Bioinformatics (Chair: TBD)

Submissions:
Short paper (up to 4 pages, for a poster presentation)
Long paper (up to 10 pages, for an oral presentation)

Deadlines:
Submissions due: May 6, 2011
Presentation acceptance notification: June 6, 2011
Final papers due: June 30, 2011
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